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The [1,5]-sigmatropic hydrogen shift is a useful tool in organic
synthesis,1-4 and it has been employed frequently in the synthesis
of complex bioactive molecules.1 This process occurs very ef-
ficiently with cis-1,3-dienes,1,2 cis-1-alkyl-2-vinylcyclopropanes1,3

andcis-1-allen-4-enes1,4 at suitable conditions (Scheme 1, eqs 1-3),
but it proceeds sluggishly withcis-3-en-1-ynes even at elevated
temperatures.3a One possible approach to realize the [1,5]-hydrogen
shift of cis-3-en-1-ynes is to mimic the thermal rearrangement of
cis-1-allen-4-enes, using a suitable metal species to generate metal-
vinylidene intermediates (eq 4). To the best of our knowledge,
examples of such reactions have never been documented, even
though there is considerable interest in metal-vinylidene chemis-
try.5 On the basis of this strategy, we report here a new ruthenium-
catalyzed cycloisomerization ofcis-3-en-1-ynes into cyclopenta-
diene and related derivatives, which are appealing building blocks
to construct the skeletons of complex molecules.6,7

As shown in Scheme 2, treatment of 1-ethynyl-3-ols1 and 2
with p-toluenesulfonic acid (p-TSA, 5 mol %) in hot toluene (110
°C, 12 h) gavecis-3-en-1-ynes3 (91%) and4 (92%), respectively.
Thecis-configuration of enynes3,4 was confirmed by proton NOE
spectra.8 Heating a benzene solution (80°C) of alcohol1 (Ar )
2-methoxyphenyl, 0.15 M) with TpRuPPh3(CH3CN)2PF6

9 (10 mol
%, Tp ) tris(1-pyrazolyl)borate) for 4 h gave cyclopentadiene5
in 51% yield and enyne3 (40%). At a longer period (12 h, entry
2), the desired diene5 was obtained up to 79% yield with complete
consumption of enyne3. Entry 3 confirms thatcis-enyne3 is truly
the active intermediate in the cyclization of alcohol1 to diene5.
Heating species3 with the catalyst (10 mol %) in benzene (80°C,
12 h) produced diene5 in 80% yield; structural assignment of diene
5 was based on the1H NOE spectra.8 Similarly, the alcohol2 (Ar
) 2-thienyl) and itscis-enyne derivative4 were shown to be equally
active in this catalytic cyclization; they each gave diene6 in 65-
66% yields (entries 4 and 5). The ruthenium catalyst has dual roles
in catalytic activities: dehydration of 1-ethynyl-3-ols and cyclization
of cis-enyne.

To examine the generality of this cycloisomerization, we used
various 1-ethynyl-3-ols7-16 (Table 1) in the catalytic cyclization
because these alcohols are equally active as their dehydratedcis-
enyne derivatives. Most of these alcohols bear aryl or heteroaryl
substituents at their C(3) and C(5) carbons to ensure the formation
of a single and thermally stable cyclopentadiene regioisomer.10

Entries 1-3 reveal that the C(5)-phenyl substituent of alcohols7
was catalytically as active as their 4-MeOPh and 4-CF3Ph analogues
8 and9. This ruthenium catalyst is also active in the cyclizations
of alcohols10-11bearing a furyl group and gave cyclopentadienes
27-28 in 62-65% yields. Entries 6-8 indicate the effects of
alternating the C(3)-phenyl substituent of the alcohols12-14; the
benzene group (12) produces a greater yield of cyclized product
than do the reactions of its 4-tolyl (13) and 4-CF3Ph counterparts
(14). The value of this cyclization is highlighted by its applicability

to the activation of a non-benzylic C-H bond, as represented by
substrates15 and16. The corresponding cylopentene products32
and33were obtained in 71% and 53% yields, respectively (entries
9 and 10). The molecular structures of cyclopentadiene29 and
cyclopentene33 were also characterized by X-ray diffraction
studies.8 The high efficiencies were maintained when this cycliza-
tion was applied to the synthesis of trisubstituted cyclopentene34-
35 (80-84%) and cyclopentene36 (89%) fromcis-enyne substrates
17-19. Entries 14-17 show additional instances for cyclization
of cis-enynes20-23via a non-benzylic C-H bond activation, and
the cyclized products37-39 and 34 were obtained in 71-79%
yields. This new approach is very useful to construct bicyclic
carbocyclic skeletons because only one regioisomer was formed
exclusively (entries 11, 12, 14-17).

As shown in Scheme 3 (eq 1), the alkynyl deuterium ofd1-3
produced the diened1-5 bearing only 21% deuterium excess at the
CHdCPh carbon. The remaining three diene protons ofd1-5
contained a total 0.42D content according to mass analysis.11 The
1,5-hydrogen shift2,6-7 of the cyclopentadiene framework hampers
a precise interpretation of2H NMR labeling studies. Using a highly
deuterated enyned3-3 circumvented this problem. Equation 2 shows
the deuterium distribution of diened3-5 generated from thisd3-3
enyne. The kinetic isotope effect of the CD2 group ofd3-5 inhibits
this 1,5-hydrogen shift.12 Notably, one CeD2Ph deuterium of species

Scheme 1

Scheme 2

a [Ru] ) 10 mol % TpRuPPh3(CH3CN)2PF6. b[substrate]) 0.15 M, 80
°C. cYields were reported after separation from a silica column.
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d3-3 relocates to the CD2 fragment of diened3-5, and the other
deuterium is present at the Ca-carbon ofd3-5. In this transformation,
the alkynyl proton ofd3-3 undergoes a 1,2-shift to relocate to the
Cb-carbon ofd3-5.

Scheme 4 shows a plausible mechanism to rationalize the
deuterium-labeling experiments. The 1,2-shift of the alkynyl
hydrogen ofd3-3 indicates the formation of ruthenium-vinylidene
intermediate5 A, which undergoes a subsequent 1,5-sigmatropic shift
to generate ruthenahaxa-3,5-trieneB. A subsequent 6π-electro-
cyclization13 of speciesB gives ruthenacyclohexa-2,4-diene species
C. Reductive elimination of this Ru(IV)-triene species produces
cyclopentadieneD and ultimately yields the most stable regioisomer
d3-5 via a 1,5-hydrogen shift. The deuterium distribution ofd3-5
in Scheme 3 precludes an involvement of ruthenium-π-allyl E as

a reaction intermediate, which equilibrates with itsσ-allyl species
F and would ultimately generate diened3-5 bearing a deuterium
distribution inconsistent with our observation.

Althoughcis-3-en-1-yne is a common and practical functional-
ity,14 cycloisomerization of this moiety into a cyclopentadiene or
related framework is unprecedented before our findings. Here we
report that TpRuPPh3(CH3CN)2PF6 implements the cycloisomer-
ization of unactivatedcis-3-en-1-ynes and efficiently produces stable
cyclopentadiene and related derivatives. The mechanism of this
cyclization is proposed to involve a [1,5]- sigmatropic hydrogen
shift of ruthenium-vinylidene intermediates on the basis of
deuterium-labeling experiments.
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Table 1. Ruthenium-Catalyzed Cyclization of 1-Ethynyl-3-ols and
cis-Enynes

a 10 mol % catalyst, [substrate]) 0.15 M, benzene, 80°C, 12 h.b Product
yields were given after separation from a silica column.c Diene 38 was
obtained in a 10:1 mixture of two isomers, and only the major isomer was
shown.

Scheme 3

Scheme 4
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